For all academic publications (peer-reviewed papers and preprints),
see:
Peer-reviewed journal articles
- Kleinberg, B., Loconte, R., & Verschuere, B.
(2025). Effective faking of verbal deception detection with
target‐aligned adversarial attacks. Legal and Criminological
Psychology, lcrp.70001. https://doi.org/10.1111/lcrp.70001
- Loconte, R., & Kleinberg, B. (2025).
Examining embedded lies through computational text analysis.
Scientific Reports, 15(1), 26482. https://doi.org/10.1038/s41598-025-11327-w
- Lukács, G., Kleinberg, B., Fekete, A., &
Matsuda, I. (2025). A Filtering Response Time Concealed Information
Test for Searching for Relevant Concealed Items. Applied Cognitive
Psychology, 39(5), e70114. https://doi.org/10.1002/acp.70114
- Norouzi, R., Kleinberg, B., Vermunt, J. K., &
Van Lissa, C. J. (2025). Capturing causal claims: A fine-tuned text
mining model for extracting causal sentences from social science
papers. Research Synthesis Methods, 1–18. https://doi.org/10.1017/rsm.2024.13
- Peereboom, S., Schwabe, I., & Kleinberg, B.
(2025). Cognitive phantoms in large language models through the lens
of latent variables. Computers in Human Behavior: Artificial
Humans, 4, 100161. https://doi.org/10.1016/j.chbah.2025.100161
- Stavrova, O., Kleinberg, B., Evans, A. M., &
Ivanović, M. (2025). Scientific publications that use promotional
language in the abstract receive more citations and public
attention. Communications Psychology, 3(1), 118. https://doi.org/10.1038/s44271-025-00293-8
- Loconte, R., Kleinberg, B., & Monaro, M.
(2024). Quali metodi per la valutazione dei Large Language Models
(LLM)? Riflessioni sull’uso di un approccio neuropsicologico e sullo
sviluppo di una psicometria dei LLM. Giornale italiano di
psicologia, 3, 579–584. https://doi.org/10.1421/114432
- Stavrova, O., Kleinberg, B., Evans, A. M., &
Ivanović, M. (2024). Expressions of uncertainty in online science
communication hinder information diffusion. PNAS Nexus, 3(10),
pgae439. https://doi.org/10.1093/pnasnexus/pgae439
- Trozze, A., Davies, T., & Kleinberg, B. (2024).
Large language models in cryptocurrency securities cases: Can a GPT
model meaningfully assist lawyers? Artificial Intelligence and Law.
https://doi.org/10.1007/s10506-024-09399-6
- Trozze, A., Kleinberg, B., & Davies, T. (2024).
Detecting DeFi securities violations from token smart contract
code. Financial Innovation, 10(1), 78. https://doi.org/10.1186/s40854-023-00572-5
- Bergmans, B. J. M., Gebeyehu, B. Y., Van Puijenbroek, E. P., Van
Deun, K., Kleinberg, B., Murk, J.-L., & De Vries,
E. (2023). Infections in Biological and Targeted Synthetic Drug Use
in Rheumatoid Arthritis: Where do We Stand? A Scoping Review and
Meta-analysis. Rheumatology and Therapy. https://doi.org/10.1007/s40744-023-00571-z
- Bray, S. D., Johnson, S. D., & Kleinberg, B.
(2023). Testing human ability to detect ‘deepfake’ images of human
faces. Journal of Cybersecurity, 9(1), tyad011. https://doi.org/10.1093/cybsec/tyad011
- Soldner, F., Kleinberg, B., & Johnson, S. D.
(2023). Counterfeits on dark markets: A measurement between Jan-2014
and Sep-2015. Crime Science, 12(1), 18. https://doi.org/10.1186/s40163-023-00195-2
- Trozze, A., Davies, T., & Kleinberg, B. (2023).
Of degens and defrauders: Using open-source investigative tools to
investigate decentralized finance frauds and money laundering.
Forensic Science International: Digital Investigation, 46, 301575. https://doi.org/10.1016/j.fsidi.2023.301575
- Van Der Vegt, I., & Kleinberg, B. (2023). A
multi-modal panel dataset to understand the psychological impact of the
pandemic. Scientific Data, 10(1), 537. https://doi.org/10.1038/s41597-023-02438-y
- van der Vegt, I., Kleinberg, B., & Gill, P.
(2023). Proceed with caution: On the use of computational
linguistics in threat assessment. Journal of Policing, Intelligence
and Counter Terrorism, 1–9. https://doi.org/10.1080/18335330.2023.2165137
- Verschuere, B., Lin, C.-C., Huismann, S.,
Kleinberg, B., Willemse, M., Mei, E. C. J., Van Goor,
T., Löwy, L. H. S., Appiah, O. K., & Meijer, E. (2023). The
use-the-best heuristic facilitates deception detection. Nature
Human Behaviour, 7(5), 718–728. https://doi.org/10.1038/s41562-023-01556-2
- Hoogeveen, S., Sarafoglou, A., Aczel, B., Aditya, Y., Alayan, A. J.,
Allen, P. J., Altay, S., Alzahawi, S., Amir, Y., Anthony, F.-V., Kwame
Appiah, O., Atkinson, Q. D., Baimel, A., Balkaya-Ince, M., Balsamo, M.,
Banker, S., Bartoš, F., Becerra, M., Beffara, B., … Wagenmakers, E.-J.
(2022). A many-analysts approach to the relation between religiosity
and well-being. Religion, Brain & Behavior, 1–47. https://doi.org/10.1080/2153599X.2022.2070255
- Soldner, F., Kleinberg, B., & Johnson, S. D.
(2022). Confounds and overestimations in fake review detection:
Experimentally controlling for product-ownership and data-origin.
PLOS ONE, 17(12), e0277869. https://doi.org/10.1371/journal.pone.0277869
- Trozze, A., Davies, T., & Kleinberg, B. (2022).
Explaining prosecution outcomes for cryptocurrency-based financial
crimes. Journal of Money Laundering Control. https://doi.org/10.1108/JMLC-10-2021-0119
- Trozze, A., Kamps, J., Akartuna, E. A., Hetzel, F. J.,
Kleinberg, B., Davies, T., & Johnson, S. D. (2022).
Cryptocurrencies and future financial crime. Crime Science,
11(1), 1. https://doi.org/10.1186/s40163-021-00163-8
- van der Vegt, I., Gregory, P., van der Meer, B. B., Yang, J.,
Kleinberg, B., & Gill, P. (2022). Assessment
procedures in anonymously written threats of harm and violence.
Journal of Threat Assessment and Management. https://doi.org/10.1037/tam0000168
- van der Vegt, I., Kleinberg, B., & Gill, P.
(2022). Predicting author profiles from online abuse directed at
public figures. Journal of Threat Assessment and Management. https://doi.org/10.1037/tam0000172
- Kleinberg, B., & Verschuere, B. (2021). How
humans impair automated deception detection performance. Acta
Psychologica, 213, 103250. https://doi.org/10.1016/j.actpsy.2020.103250
- Mozes, M., van der Vegt, I., & Kleinberg, B.
(2021). A repeated-measures study on emotional responses after a
year in the pandemic. Scientific Reports, 11(1), 23114. https://doi.org/10.1038/s41598-021-02414-9
- Schweinsberg, M., Feldman, M., Staub, N., […]
Kleinberg, B. […] Luis Uhlmann, E. (2021). Same
data, different conclusions: Radical dispersion in empirical results
when independent analysts operationalize and test the same
hypothesis. Organizational Behavior and Human Decision Processes.
https://doi.org/10.1016/j.obhdp.2021.02.003
- van der Vegt, I., Mozes, M., Gill, P., &
Kleinberg, B. (2021). Online influence, offline
violence: Language use on YouTube surrounding the ‘Unite the Right’
rally. Journal of Computational Social Science, 4(1), 333–354. https://doi.org/10.1007/s42001-020-00080-x
- van der Vegt, I., Mozes, M., Kleinberg, B., &
Gill, P. (2021). The Grievance Dictionary: Understanding threatening
language use. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01536-2
- Kleinberg, B., van der Vegt, I., & Gill, P.
(2020). The temporal evolution of a far-right forum. Journal of
Computational Social Science. https://doi.org/10.1007/s42001-020-00064-x
- Lukács, G., Kleinberg, B., Kunzi, M., &
Ansorge, U. (2020). Response Time Concealed Information Test on
Smartphones. Collabra: Psychology, 6(1), 4. https://doi.org/10.1525/collabra.255
- Volodko, A., Cockbain, E., & Kleinberg, B.
(2020). “Spotting the signs” of trafficking recruitment online:
Exploring the characteristics of advertisements targeted at migrant
job-seekers. Trends in Organized Crime. https://doi.org/10.1007/s12117-019-09376-5
- Kleinberg, B., Arntz, A., & Verschuere, B.
(2019). Being accurate about accuracy in verbal deception
detection. PLOS ONE, 14(8), e0220228. https://doi.org/10.1371/journal.pone.0220228
- van der Vegt, I., Gill, P., Macdonald, S., &
Kleinberg, B. (2019). Shedding Light on Terrorist
and Extremist Content Removal. Global Research Network on Terrorism
and Technology. https://rusi.org/sites/default/files/20190703_grntt_paper_3.pdf
- Kamps, J., & Kleinberg, B. (2018). To the
moon: Defining and detecting cryptocurrency pump-and-dumps. Crime
Science, 7(1), 18.
- Kleinberg, B., Mozes, M., Arntz, A., &
Verschuere, B. (2018). Using named entities for computer-automated
verbal deception detection. Journal of Forensic Sciences, 63(3),
714–723.
- Kleinberg, B., Van Der Toolen, Y., Vrij, A., Arntz,
A., & Verschuere, B. (2018). Automated verbal credibility
assessment of intentions: The model statement technique and predictive
modeling. Applied Cognitive Psychology, 32(3), 354–366.
- Kleinberg, B., Warmelink, L., Arntz, A., &
Verschuere, B. (2018). The first direct replication on using verbal
credibility assessment for the detection of deceptive intentions.
Applied Cognitive Psychology, 32(5), 592–599.
- Suchotzki, K., De Houwer, J., Kleinberg, B., &
Verschuere, B. (2018). Using more different and more familiar
targets improves the detection of concealed information. Acta
Psychologica, 185, 65–71.
- Kleinberg, B., & Mozes, M. (2017).
Web-based text anonymization with Node.js: Introducing NETANOS
(Named entity-based Text Anonymization for Open Science). The
Journal of Open Source Software, 2(14).
- Kleinberg, B., Nahari, G., Arntz, A., &
Verschuere, B. (2017). An investigation on the detectability of
deceptive intent about flying through verbal deception detection.
Collabra: Psychology, 3(1).
- Lukács, G., Kleinberg, B., & Verschuere, B.
(2017). Familiarity-related fillers improve the validity of reaction
time-based memory detection. Journal of Applied Research in Memory
and Cognition, 6(3), 295–305.
- Verschuere, B., & Kleinberg, B. (2017).
Assessing autobiographical memory: The web-based autobiographical
Implicit Association Test. Memory, 25(4), 520–530.
- Kleinberg, B., & Verschuere, B. (2016). The
role of motivation to avoid detection in reaction time-based concealed
information detection. Journal of Applied Research in Memory and
Cognition, 5(1), 43–51.
- Leach, A.-M., Ammar, N., England, D. N., Remigio, L. M.,
Kleinberg, B., & Verschuere, B. J. (2016). Less
is more? Detecting lies in veiled witnesses. Law and Human
Behavior, 40(4), 401.
- Verschuere, B., & Kleinberg, B. (2016).
ID-Check: Online Concealed Information Test Reveals True
Identity. Journal of Forensic Sciences, 61, S237–S240.
- Kleinberg, B., & Verschuere, B. (2015).
Memory Detection 2.0: The First Web-Based Memory Detection
Test. PLOS ONE, 10(4), e0118715. https://doi.org/10.1371/journal.pone.0118715
- Open Science Collaboration. (2015). Estimating the
reproducibility of psychological science. Science, 349(6251),
aac4716.
- Verschuere, B., Kleinberg, B., & Theocharidou,
K. (2015). RT-based memory detection: Item saliency effects in the
single-probe and the multiple-probe protocol. Journal of Applied
Research in Memory and Cognition, 4(1), 59–65.
Peer-reviewed conference papers
Note: conference proceedings papers are the premier outlet for
research in Natural Language Processing and computational sciences and
have a competitive peer-reviewing process.
- Emmery, C., Miotto, M., Kramp, S., & Kleinberg,
B. (2024). SOBR: A Corpus for Stylometry, Obfuscation, and Bias on
Reddit. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti,
& N. Xue (Eds.), Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024) (pp. 14967–14983). ELRA and ICCL. https://aclanthology.org/2024.lrec-main.1302
- Griffin, L., Kleinberg, B., Mozes, M., Mai, K.,
Vau, M. D. M., Caldwell, M., & Mavor-Parker, A. (2023). Large
Language Models respond to Influence like Humans. Proceedings
of the First Workshop on Social Influence in Conversations (SICon
2023), 15–24. https://doi.org/10.18653/v1/2023.sicon-1.3
- Miotto, M., Rossberg, N., & Kleinberg, B.
(2022). Who is GPT-3? An exploration of personality, values and
demographics. Proceedings of the Fifth Workshop on Natural
Language Processing and Computational Social Science (NLP+CSS),
218–227. https://aclanthology.org/2022.nlpcss-1.24
- Mozes, M., Kleinberg, B., & Griffin, L. (2022).
Identifying Human Strategies for Generating Word-Level Adversarial
Examples. Findings of the Association for Computational
Linguistics: EMNLP 2022, 6118–6126. https://aclanthology.org/2022.findings-emnlp.454
- Mozes, M., Bartolo, M., Stenetorp, P., Kleinberg,
B., & Griffin, L. (2021). Contrasting Human- and
Machine-Generated Word-Level Adversarial Examples for Text
Classification. Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 8258–8270. https://aclanthology.org/2021.emnlp-main.651
- Mozes, M., Stenetorp, P., Kleinberg, B., &
Griffin, L. (2021). Frequency-Guided Word Substitutions for
Detecting Textual Adversarial Examples. Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, 171–186. https://www.aclweb.org/anthology/2021.eacl-main.13
- van der Vegt, I., & Kleinberg, B. (2020).
Women Worry About Family, Men About the Economy: Gender Differences
in Emotional Responses to COVID-19. Social Informatics,
12467, 397–409. https://doi.org/10.1007/978-3-030-60975-7_29
- Kleinberg, B., van der Vegt, I., & Mozes, M.
(2020, July). Measuring Emotions in the COVID-19 Real World Worry
Dataset. Proceedings of the 1st Workshop on NLP for COVID-19 at
ACL 2020. ACL-NLP-COVID19 2020, Online. https://www.aclweb.org/anthology/2020.nlpcovid19-acl.11
- Soldner, F., Ho, J. C., Makhortykh, M., van der Vegt, I., Mozes, M.,
& Kleinberg, B. (2019). Uphill from here:
Sentiment patterns in videos from left- and right-wing YouTube news
channels. Workshop on Natural Language Processing and
Computational Social Science. NAACL.
- Kleinberg, B., Mozes, M., & van der Vegt, I.
(2018). Identifying the sentiment styles of YouTube’s vloggers.
3581–3590. https://www.aclweb.org/anthology/D18-1394
- Pérez-Rosas, V., Kleinberg, B., Lefevre, A., &
Mihalcea, R. (2018). Automatic Detection of Fake News.
Proceedings of the 27th International Conference on Computational
Linguistics, 3391–3401. http://aclweb.org/anthology/C18-1287
- Kleinberg, B., Nahari, G., & Verschuere, B.
(2016). Using the verifiability of details as a test of deception: A
conceptual framework for the automation of the verifiability
approach. Proceedings of the Second Workshop on Computational
Approaches to Deception Detection, 18–25.
Pre-prints
- Bosten, M., & Kleinberg, B. (2025).
Conflicts of Interest in Published NLP Research 2000–2024
(No. arXiv:2502.16218). arXiv. https://doi.org/10.48550/arXiv.2502.16218
- Rossberg, N., Kleinberg, B., O’Sullivan, B., Longo,
L., & Visentin, A. (2025). The Feature Understandability Scale
for Human-Centred Explainable AI: Assessing Tabular Feature
Importance (No. arXiv:2510.07050). arXiv. https://doi.org/10.48550/arXiv.2510.07050
- van der Vegt, I., Kleinberg, B., Miotto, M., &
Festor, J. (2025). Translating the Grievance Dictionary: A
psychometric evaluation of Dutch, German, and Italian versions
(No. arXiv:2505.07495). arXiv. https://doi.org/10.48550/arXiv.2505.07495
- Verschuere, B., Kleinberg, B., Van Kolfschooten,
M., Bolhoven, L., & Rassin, E. (2025). How Dutch legal
professionals assess statement credibility: Evidence from a survey and
an analysis of 518 court rulings on sexual abuse. Open Science
Framework. https://doi.org/10.31219/osf.io/grj5c_v1
- Kleinberg, B., Zegers, J., Festor, J., Vida, S.,
Präsent, J., Loconte, R., & Peereboom, S. (2024). Trying to be
human: Linguistic traces of stochastic empathy in language models
(No. arXiv:2410.01675). arXiv. https://doi.org/10.48550/arXiv.2410.01675
- Soldner, F., Plum, F., Kleinberg, B., &
Johnson, S. D. (2024). From cryptomarkets to the surface web:
Scouting eBay for counterfeits (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2406.05021
- Zegers, J., & Kleinberg, B. (2024). Beyond
the sample: Individual differences in psychological responses to the
COVID-19 pandemic. https://doi.org/10.31234/osf.io/2px7h
- Mozes, M., He, X., Kleinberg, B., & Griffin, L.
D. (2023). Use of LLMs for Illicit Purposes: Threats, Prevention
Measures, and Vulnerabilities (No. arXiv:2308.12833). arXiv. http://arxiv.org/abs/2308.12833
- Ilias, L., Soldner, F., & Kleinberg, B. (2022).
Explainable Verbal Deception Detection using Transformers. https://doi.org/10.48550/ARXIV.2210.03080
- Kleinberg, B., Davies, T., & Mozes, M. (2022).
Textwash—Automated open-source text anonymisation.
arXiv:2208.13081. https://doi.org/10.48550/arXiv.2208.13081
- Mozes, M., & Kleinberg, B. (2021). No
Intruder, no Validity: Evaluation Criteria for Privacy-Preserving Text
Anonymization. arXiv:2103.09263 [Cs]. http://arxiv.org/abs/2103.09263
- Kleinberg, B. (2020). Manipulating emotions for
ground truth emotion analysis. arXiv:2006.08952 [Cs]. http://arxiv.org/abs/2006.08952
- Kleinberg, B., & McFarlane, P. (2020).
Violent music vs violence and music: Drill rap and violent crime in
London. arXiv:2004.04598 [Cs]. http://arxiv.org/abs/2004.04598
- Kleinberg, B., & McFarlane, P. (2019).
Examining UK drill music through sentiment trajectory analysis.
arXiv:1911.01324 [Cs]. http://arxiv.org/abs/1911.01324 15.
Kleinberg, B., van der Vegt, I., Arntz, A., &
Verschuere, B. (2019). Detecting deceptive communication through
linguistic concreteness. PsyArXiv. https://doi.org/10.31234/osf.io/p3qjh
- Kleinberg, B., Mozes, M., van der Toolen, Y., &
Verschuere, B. (2017). NETANOS—Named entity-based text anonymization
for open science. OSF Preprints, 10.
Book chapters
- Kamps, J., Trozze, A., & Kleinberg, B. (2022).
Cryptocurrencies: Boons and curses for fraud prevention. In Y.
Hanoch & S. Wood (Eds.), A fresh look at fraud: Theoretical and
applied perspectives. Routledge.
- Soldner, F., Kleinberg, B., & Johnson, S.
(2022). Trends in online consumer fraud: A data science
perspective. In Y. Hanoch & S. Wood (Eds.), A fresh look at
fraud: Theoretical and applied perspectives. Routledge.
- Van der Vegt, I., Kleinberg, B., & Gill, P.
(2022). Understanding Lone-Actor Violence through Linguistic
Analysis. In J. C. Holzer, A. J. Dew, P. R. Recupero, & P. Gill
(Eds.), Lone-actor terrorism: An integrated framework. Oxford
University Press.
- Kleinberg, B., Arntz, A., & Verschuere, B.
(2019). Detecting Deceptive Intentions: Possibilities for
Large-Scale Applications. In T. Docan-Morgan (Ed.), The
Palgrave Handbook of Deceptive Communication (pp. 403–427).
Springer International Publishing. https://doi.org/10.1007/978-3-319-96334-1_21
- Kleinberg, B., van der Toolen, Y., Arntz, A., &
Verschuere, B. (2018). Detecting Concealed Information on a Large
Scale: Possibilities and Problems. In J. P. Rosenfeld (Ed.),
Detecting Concealed Information and Deception: Recent
Developments (p. 377).
Popular science
- Van der Vegt, I., Kleinberg, B., & Gill, P.
(2022). Linguistic Threat Assessment: Challenges and
Opportunities. Crest Security Review, 13(Winter 2022), 12–13.
- van der Vegt, I., Kleinberg, B., & Gill, P.
(2020). The Temporal Evolution of a Far-Right Forum. GNET. https://gnet-research.org/2020/03/05/the-temporal-evolution-of-a-far-right-forum/
- McFarlane, P., & Kleinberg, B. (2020, March 9).
Political Drillin? What machine learning tells us about the reality
of drill music. Policing Insight. https://policinginsight.com/features/analysis/political-drillin-what-machine-learning-tells-us-about-the-reality-of-drill-music/
- Kamps, J., & Kleinberg, B. (2019, January 22).
Cryptocurrency pump-and-dumps. BioMedCentral - On
Society.
- Kleinberg, B., & Verschuere, B. (2019, April
16). Being Honest About Deception Detection: Between popular idea
and scientific evidence. Aviation Security International
Magazine.
- Kleinberg, B., Mozes, M., & Davies, T. (2019,
July 18). Making sensitive text data accessible for computational
social science—SAGE Ocean | Big Data, New Tech, Social Science.
SAGE Ocean. https://ocean.sagepub.com/blog/making-sensitive-text-data-accessible-for-computational-social-science
- Kleinberg, B., Mozes, M., & Davies, T. (2019,
November 28). What does it mean to anonymize text? — SAGE Ocean |
Big Data, New Tech, Social Science. SAGE Ocean. https://ocean.sagepub.com/blog/what-does-it-mean-to-anonymize-text
Other reports/briefings
- Akartuna, E. A., Hetzel, F. J., & Kleinberg, B.
(2021). Policy brief: Cryptocurrencies and future crime (Dawes
Centre for Future Crime) [Policy Brief].
- Royal United Services Institute & (RUSI) for Defence and
Security Studies. (2021). A Complex Matter: Examining Reporting on
Terrorism in the UK. https://static.rusi.org/256_op_media_and_terrorism_web_0.pdf
- Kleinberg, B., Griffin, L. D., Rottweiler, B.,
Miotto, M., Rossberg, N., Praesent, J., & Gal, J. (n.d.).
Targeted shifting of attitudes towards women with LLM-generated
arguments. In Preparation.
- Kleinberg, B., Präsent, J., Gal, J., & Griffin,
L. D. (n.d.). Learning to convince from another AI:
reinforcement-based argument generation. In Preparation.
Software
- Kleinberg, B. (2024). rgpt3: Making requests
from R to the GPT API (Version 1.0) [Computer software]. https://doi.org/10.5281/zenodo.7327667
- Mozes, M., & Kleinberg, B. (2023).
Textwash: Automated, Learning-Based Text Anonymisation
[Computer software]. https://github.com/maximilianmozes/textwash
- Mozes, M., & Kleinberg, B. (2022). netanos:
Named Entity-based Text ANonymization for Open Science [Computer
software]. https://www.npmjs.com/package/netanos
- Lukács, G., van Doorn, J., & Kleinberg, B.
(2021). neatStats: Neat and Painless Statistical Reporting
[Computer software]. https://cran.r-project.org/web/packages/neatStats/index.html
List last updated: November 2025